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Abstract

An effort is made to obtain the numerical solution of the boundary layer flow with

Joule heating and activation energy over the stretching/shrinking sheet. The gov-

erning partial differential equations are reduced to a system of ordinary differential

equations using suitable transformations. The resulting coupled system subject

to the boundary conditions is solved using the shooting method. The influence

of physical parameters such as magnetic field parameters, heat source parame-

ter, Prandtl number, suction parameter, stretching/shrinking parameter, Eckert

number, Schmidt number, thermophoresis parameter, Brownian motion, reaction

parameter and temperature difference on the velocity profile, the temperature dis-

tribution, the concentration profile, skin friction coefficient, Nusselt number and

Sherwood number are studied and presented in graphical and tabular forms. It is

observed, that by raising the values of activation energy parameter, the numerical

values of Nusselt number increase, and the concentration profile also increases. By

raising the values of reaction rate parameter, Nusselt number will be decreased

but Sherwood number shows increasing behaviour.
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Chapter 1

Introduction

A significant form of flow that occurs in civil engineering is boundary layer action

over a continuously moving solid surface. The heat transfer due to a continuously

stretching surface through an ambient fluid is one of the thrust areas of current re-

search. The problem of heat transfer are discussed in a broader spectrum of science

and engineering operations, especially in chemical operations. Many chemical en-

gineering operations, such as metallurgical processes and polymer extrusion, make

the cooling of a molten liquid mandatory that has been stretched into a cooling

system.

Sakiadis [1] was first who initiated the problem of boundary layer approximation

over a stretching surface. He analyzed the non-Newtonian Maxwell fluid with nano

materials over an exponentially stretched surface. The flow caused by the stretch-

ing sheet was investigated by Crane [2]. He examined the behaviour of boundary

layer on the continuous surface. Chakrabarti and Gupta [3] investigated the linear

stretching problem for hydromagnetic case. The variable-effects of surface temper-

ature and heat flux on heat- transfer properties of a continuous stretching surface

studied by Chen et al [4].

In recent time, numerious research articles such as [5], [6] and [7], are produced

investigating the phenomenon of the fluid flow through stretching surface. They

analyzed the impact of magnetic field parameter observing a reduction in the ve-

locity of the fluid. The fluids play a vital role in heat transfer. Suction or injection

1
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of a thermal boundary layer on a power law extended surface was investigated by

Ali [8].

Heat transfer over a stretching surface with variable surface heat flux and uniform

surface heat flux subject to injection and suction was examined by Elbashbeshy [9].

The boundary layer flows over a stretched impermeable wall are solved by means

of an analytic technique, namely the homotopy analysis method was investigated

by Liao [10]. The coupled fluid flow, heat and mass transfer phenomena over a

stretching sheet with nonlinear velocity for micropolar fluid was studied by Bhar-

gava et al. [11].

Khedr et al. [12] studied about the MHD flow of a micropolar fluid past a stretched

permeable surface with heat generation or absorption. Effects of dissipation on

nonlinear MHD flow over a stretching surface with a constant heat flux was ex-

amined by Devi and Ganga [13]. In a porous medium, radiant MHD flow over a

non-isothermal stretching layer was investigated by Vyas and Srivastava [14]. The

exact solution for axisymmetric flow and heat transfer over a radially stretching

nonlinear layer investigated by Shahzad et al. [15].

The problem in opposite case of stretching sheet, a little bit known about the

shrinking sheet having velocity on the boundary towards origin. The sheet is

shrunk into a slot in this flow arrangement, and the flow differ from the stretching

out scenario. It is also shown that maintaining flow over a shrinking sheet neces-

sitates mass suction. According to a review of the literature, the flow generated

by a shrinking sheet has earlier drew the attention of the modern-researchers due

to its generated characteristics.

A shrinking sheet is a surface that has shrunk in size to a specific area due

to external heat or suction. Shrinking film is one of the most popular applica-

tions of shrinking sheet problems in industries and engineering. Shrinking film is

very useful in bulk product packaging because it can be easily unwrapped with

enough heat. Shrinking can be used to investigate capillary effects in smaller pores,

shrink-swell behaviour, and the hydraulic properties of agricultural clay soils. The

presence and uniqueness of a similarity solution to the equation for flow caused

by a shrinking sheet with suction was established by Miklavcic and Wang [16].
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Sajid et al. [17] analyzed the MHD rotating flow of a viscous fluid over a shrinking

surface. Closed form exact solution of MHD viscous flow over a shrinking sheet

was examined by Fang and Zhang [18] in the absence of the heat transfer. The

application of homotopy analysis method for MHD viscous flow over a shrinking

sheet was examined by Sajid and Hayat [19]. An empirical solution for thermal

boundary layer flow over a shrinking sheet with a specified wall temperature and

a prescribed wall heat flux was examined by Fang and Zhang [20].

Hayat et al. [21] investigated the analytical solution for a second-grade fluid

shrinking flow in a rotating frame. MHD flow and heat transfer due to a permeable

shrinking sheet of a viscous electrically conducting fluid with prescribed surface

heat flux investigated by Ali et al. [22]. For MHD viscous flow due to shrinking

sheet, a simple non-perturbative solution was obtained by Noor et al. [23]. The

impact of heat source/sink on MHD flow and heat transfer over a shrinking sheet

with mass suction for a constant surface temperature was investigated by Bhat-

tacharyya [24]. Das [25] investigated the effects of partial slip on steady boundary

layer stagnation point flow of an electrically conducting micropolar fluid imping-

ing normally towards a shrinking sheet in the presence of a uniform transverse

magnetic field.

In 1889, a Swedish Scientist (Svantae Arrhenious), introduced the term activation

energy, defined as, the least amount of energy acquired to initiate the chemical

reaction. Food preparation, chemical engineering, oil reservoir engineering, and

oil emulsion are just some of the processes that involve mass transport with ac-

tivation energy. An industrial appliance that involves chemical reactions, such as

a reactor, and which is required to make the reaction more reactive in order to

achieve the maximum output. On the boundary layer of flow, a chemical reaction

with activation energy has been presented by Bestman [26]. Hamid and Khan [27]

modeled and studied activation energy on Williamson nanofluid with binary chem-

ical reaction variable and magnetic field impacts.

The results show that increasing the reaction rate, increases the heat transfer

rate. It is found that temperature and thermal layer thickness are decreased for

larger stratification, to inspect stagnation point flow of tangent hyperbolic liquid
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by a stretched sheet, to investigate activation energy was studied by Hayat et

al. [28].

There has been no contribution on steady, laminar, two-dimensional boundary

layer MHD flow of a viscous, electrically conducting fluid with heat transfer across

a stretching/shrinking sheet specified with changing heat flux in the presence of a

magnetic field and uniform heat source. Suction is used to stretch and shrink the

sheet.

1.1 Thesis Contributions

The present survey is focused on the numerical analysis of 2-D MHD flow fluid

along a boundary layer equation with the stretching/shrinking parameter, Joule

heating effect, thermophoresis diffusion, Brownian motion, chemical reaction rate

and activation energy. The proposed PDEs are converted into system of ODEs

by applying similarity transformations. Further, for finding the numerical results

of obtained ODEs, shooting method is utilized. The numerically obtained results

are computed by using MATLAB software packages. The impact of significant

parameters on velocity distribution, temperature distribution, concentration dis-

tribution, skin friction and Nusselt number have been discussed through graphs

and tables.

1.2 Layout of Thesis

A brief overview of the contents of the thesis is provided below.

Chapter 2 includes some basic definitions and terminologies, which are useful

to understand the concepts discussed later on.

Chapter 3 provides the proposed analytical study of numerical simulation of
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MHD boundary layer flow passing through stretching/shrinking sheet. The nu-

merical results of the governing flow equations are derived by the shooting method.

Chapter 4 extends the flow model discussed in Chapter 3 by using the effect

of Joule heating, thermophoresis diffusion, Brownian motion and chemical reac-

tion.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

This chapter is prepared to present basic definitions related to fluid mechanics

including definitions of some dimensionless numbers and governing laws just for

the description of flow analysis presented in this dissertation. An explanation of

shooting method is also included in this chapter.

2.1 Some Basic Terminologies

Definition 2.1.1 (Fluid)

“A fluid is defined as a material that deforms continuously and permanently under

the application of a shearing stress.” [29]

Definition 2.1.2 (Fluid Mechanics)

“Fluid mechanics is defined as that branch of engineering-science which deals with

the behavior of the fluid (liquids or gases) under the condition of rest and mo-

tion.” [30]

Definition 2.1.3 (Fluid Dynamics)

“It deals with the relations between velocities, acceleration of fluid with force or

6
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energy causing them.” [30]

Definition 2.1.4 (Fluid Statics)

“The study of fluids at rest is called fluid statics. The study of incompressible

fluid under static conditions is called hydrostatic and that dealing with the com-

pressible static gases is termed as aerostatic.” [30]

Definition 2.1.5 (Kinematic)

“It deals with the velocities, acceleration and the pattern flow of fluids only.” [30]

Definition 2.1.6 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the rate of shear

deformation.” [31]

Definition 2.1.7 (Kinetic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by Greek symbol ν called nu. Mathematically,

ν =
µ

ρ
.” [31]

2.2 Types of Fluid

Definition 2.2.1 (Ideal Fluids)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.
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Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [31]

Definition 2.2.2 (Real Fluids)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [31]

Definition 2.2.3 (Newtonian Fluids)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid. Water, kerosine oil

and air are examples of Newtonian fluids. ” [31]

Definition 2.2.4 (Non-Newtonian Fluids)

“A real fluid in which the shear stress is not directly proportional to the rate

of shear strain (or velocity gradient), is known as a non-Newtonian fluid. Mud,

polymer solutions and blood are examples of Non-Newtonian fluids.” [31]

Definition 2.2.5 (Hydrodynamics)

“The study of the motion of fluids that are practically incompressible such as

liquids, especially water and gases at low speeds is usually referred to as hydrody-

namics.” [32]

Definition 2.2.6 (Magnetohydrodynamics)

“Magnetohydrodynamics (MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionized gases (plasmas)

and strong electrolytes.” [33]
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2.3 Types of Flow

Definition 2.3.1 (Rotational Flow)

“A flow is said to be rotational if the fluid particles while moving in direction of

flow rotate about their mass centers. Flow near the solid boundaries is rotational,

for example, motion of liquid in a rotating tank.” [30]

Definition 2.3.2 (Irrotational Flow)

“A flow is said to be irrotational if the fluid particles while moving in the direction

of flow do not rotate about their mass centers. Flow outside the boundary layer

is generally considered irrotational.” [30]

Definition 2.3.3 (Compressible Flow)

“It is that type of flow in which the density (ρ) of the fluid changes from point to

point or in other words the density is not constant for the fluid flow. Mathemati-

cally,

ρ 6= b,

where b is constant.” [30]

Definition 2.3.4 (Incompressible Flow)

“It is that type of flow in which the density is constant for the fluid flow. Liquids

are generally incompressible while gases are compressible. Mathematically,

ρ = b,

where b is constant.” [30]

Definition 2.3.5 (Steady Flow)

“The type of flow in which the fluid characteristics like, velocity, pressure, density
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etc at a point do not change with time is called steady flow. Mathematically,

∂P

∂t
= 0,

where P is any fluid property.” [30]

Definition 2.3.6 (Unsteady Flow)

“It is that type of flow in which the velocity, pressure, density etc at any point

change with respect to time. Mathematically,

∂P

∂t
6= 0,

where P is any fluid property.” [30]

Definition 2.3.7 (Laminar Flow)

“A laminar flow is one in which path taken by the individual particles do not cross

one another and move along well defined path. This type of flow is also called

stream line flow or viscous flow, for example, blood in veins.” [30]

Definition 2.3.8 (Turbulent Flow)

“A turbulent flow is that flow in which fluid particles move in a zig zag way, for

example, high velocity flow in conduit of large size.” [30]

2.4 Modes of Heat Transfer

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [34]
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Definition 2.4.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.” [34]

Definition 2.4.3 (Convection)

“Convection heat transfer is usually defined as energy transport affected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newton’s law of cooling.” [34]

Definition 2.4.4 (Forced convection)

“Forced convection heat transfer is induced by forcing a liquid or gas, over a hot

body or surface.” [35]

Definition 2.4.5 (Natural convection)

“Natural convection is generated by the density difference induced by the temper-

ature differences within a fluid system and the small density variations present in

these types of flows.” [35]

Definition 2.4.6 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function a number of vari-

ables.” [34]

Definition 2.4.7 (Radiation)

“Radiation is the energy transfer due to the release of photons or electromagnetic

waves from a surface volume. Radiation does not require any medium to trans-

fer heat. The energy produced by radiation is transformed by electromagnetic

waves.” [36]
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Definition 2.4.8 (Boundary layer)

“Viscous effects are particularly important near the solid surfaces, where the strong

interaction of the molecules of the fluid with molecules of the solid causes the rel-

ative velocity between the fluid and the solid to become almost exactly zero for a

stationary surface. Therefore, the fluid velocity in the region near the wall must

reduce to zero. This is called no slip condition. In that condition there is no

relative motion between the fluid and the solid surface at their point of contact.

It follows that the flow velocity varies with distance from the wall; from zero at

the wall to its full value some distance away, so that significant velocity gradients

are established close to the wall. In most cases this region is thin (compared to

the typical body dimension), and it is called a boundary layer.” [29]

Definition 2.4.8 (Thermophoresis Diffusion)

“In a temperature gradient, small particles are pushed towards the lower temper-

ature because of the asymmetry of molecular impacts. The resulting force which

drives the particles along a temperature gradient towards the lower temperature,

is called thermophoretic force and the mechanism thermophoresis.” [29]

2.5 Dimensionless Numbers

Definition 2.5.1 (Eckert Number)

“It is a dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T
,

where Cp denotes the specific heat.” [36]
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Definition 2.5.2 (Prandtl Number)

“It is ratio between the momentum diffusivity ν and thermal diffusivity α. Math-

ematically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp
k
,

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [36]

Definition 2.5.3 (Skin Friction Coefficient)

“It is a dimensionless number and is defined as

Cfx =
2τ0
ρu2w

,

where τ0 is the local wall shear stress, ρ is the fluid density and u is the free stream

velocity. It expresses the dynamic friction resistance originating in viscous fluid

flow around a fixed wall.” [37]

Definition 2.5.4 (Nusselt Number)

“It is the ratio of the convective to the conductive heat transfer at a boundary in

a fluid. Mathematically,

Nux =
hL

k
,

where h stands for the convection heat transfer, L for the characteristic length

and k stands for thermal conductivity.” [35]

Definition 2.5.5 (Sherwood Number)

“It is a nondimensional quantity which shows the ratio of the mass transport by
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convection to the transfer of mass by diffusion. Mathematically,

Shx =
kL

D
,

where L is the characteristic length, D is the mass diffusivity and k is the mass

transfer coeffcient.” [38]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
UwL

ν
,

where Uw denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [31]

2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change

of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

∂ρ

∂t
+∇.(ρu) = 0.” [34]

Definition 2.6.2 (Momentum Equation)

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newtons Third Law of action and reaction
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governs the internal forces. Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.” [34]

Definition 2.6.3 (Energy Equation)

“Energy can neither created nor destroyed, it can be transformed from one form

to another form but total amount of an isolated system remains constant. For

example energy is conserved over time. It is the fundamental law of physics which

is also known as the first law of thermodynamics.

The mathematical form of energy equation in two-dimensional for fluid can be

written as,

∂T

∂x
+ v

∂T

∂y
= α

[
∂2T

∂x2
+
∂2T

∂y2

]
+

µ

ρCp
φ∗,

where φ∗ is the dissipation function.” [34]

2.7 Shooting Method

“To elaborate the shooting method, consider the following nonlinear boundary

value problem.

2f ′′′(x) + f(x)f ′′(x) = 0.

f(0) = 0, f ′(0) = 0, f ′(G) = 1.

 (2.1)

To reduce the order of the above boundary value problem, introduce the following

notations.

f = y1 f ′ = y′1 = y2 f ′′ = y′2 = y3 f ′′′ = y′3. (2.2)
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As a result, (2.1) converted into the system of first order ODEs.

y′1 = y2, y1(0) = 0, (2.3)

y′2 = y3, y2(0) = 0, (2.4)

y′3 = −1

2
y1y3, y3(0) = w, (2.5)

where w is the missing initial condition which will be guessed.

The above IVP will be numerically solved by the RK-4 method. The missing

condition w is to be chosen such that.

y2(G,w) = 1. (2.6)

For convenience, now onward, y2(G,w) will be denoted by y2(w).

Let us further denote y2(w)− 1 by H(w), so that

H(w) = 0. (2.7)

The above equation can be solved by using Newton’s method, which has the fol-

lowing iterative formula.

wn+1 = wn − H(wn)
∂H(wn)
∂w

, n = 0, 1, 2...

or

wn+1 = wn − y2(w
n)− 1

∂y2(wn)
∂w

. n = 0, 1, 2... (2.8)

To find ∂y2(wn)
∂w

, introduce the following notations.

∂y1
∂w

= y4,
∂y2
∂w

= y5,
∂y3
∂w

= y6. (2.9)
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As a result of these new notations, the Newton’s iterative scheme, will then get

the following form.

wn+1 = wn − y2(w
n)− 1

y5(wn)
. (2.10)

Now differentiating the system of two first order ODEs (2.3)-(2.5) with respect to

w, we get another system of ODEs, as follows.

y′4 = y5, y4(0) = 0. (2.11)

y′5 = y6, y5(0) = 0. (2.12)

y′6 = −1

2
[y1y6 + y3y4] , y6(0) = 1. (2.13)

Writing all the six ODEs (2.3), (2.4), (2.5), (2.11), (2.12) and (2.13) together, we

have the following initial value problem.

y′1 = y2, y1(0) = 0.

y′2 = y3, y2(0) = 0.

y′3 = −1

2
y1y3, y3(0) = w.

y′4 = y5, y4(0) = 0.

y′5 = y6, y5(0) = 0.

y′6 = −1

2
[y1y6 + y3y4] , y6(0) = 1.

The above system together will be solved numerically by Runge-Kutta method of

order four. The missing condition will be updated by the Newton’s formula in

(2.10).

The stopping criteria for the Newton’s technique is set as,

| y2(w)− 1 |< ε,

where ε > 0 is an arbitrarily small positive number.”



Chapter 3

Numerical Study of a MHD

Boundary Layer Flow

In this chapter, the numerical analysis of a 2-D MHD fluid flow past a linearly

stretching/shrinking sheet under the influence of uniform magnetic field and heat

generation will be carried out. The set of PDEs is converted into a system of

dimensionless ODEs by an appropriate transformation. In order to solve ODEs,

the shooting technique is implemented in MATLAB. At the end of this chapter the

numerical solution of various profiles will be discussed. The obtained numerical

results are given in the form of tables and graphs. This chapter provides a detailed

review of [39].

3.1 Mathematical Modeling

Assume a steady, 2-D laminar flow of viscous, incompressible, electrically conduct-

ing fluid, caused by a stretching/shrinking sheet subjected to suction in the pres-

ence of uniform transverse magnetic field. A uniform magnetic field of strength B0

is applied in the direction parallel to y-axis normal to the sheet lying horizontally

along x-axis.

18
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Figure 3.1: Systematic representation of physical model.

The set of equations describing the flow are as follows:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂y2

)
− σB2

0

ρ
u, (3.2)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

(
∂2T

∂y2

)
+Q(T − T∞). (3.3)
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The associated BCs have been taken as:

Uw = u = bx, v = −v0, − k∂T
∂y

= qw = Dxn, at y = 0,

u→ 0, T → T∞, as y →∞.

 (3.4)

The velocity component along x-axis and y-axis are denoted by u and v, ν de-

notes kinematic viscosity, the base fluid density is denoted by ρ, the specific heat

capacity at constant pressure is denoted by Cp, thermal conductivity of the fluid

is denoted by k, dimensional heat generation coefficient is denoted by Q, electrical

conductivity of the fluid is denoted by σ.

For the conversion of the mathematical model (3.1)-(3.3) into the system of ODEs,

the following similarity transformation can be considered [39].

ψ(x, y) =
√
aνxf(ζ),

T − T∞ =
Dxn

k

√
a

ν
θ(ζ),

ζ = y

√
a

ν
,


(3.5)

where ψ denotes the stream function.

The detailed procedure for the conversion of (3.1)-(3.3) into the dimensionless

form has been described in the upcoming discussion:

• u =
∂ψ

∂y

=
∂

∂y

(√
aνxf(ζ)

)
=
√
aνxf ′(ζ)

∂ζ

∂y

=
√
aνxf ′(ζ)

√
a

ν

u = axf ′(ζ). (3.6)

• v = −∂ψ
∂x

= − ∂

∂x

(√
aνxf(ζ)

)
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= −
√
aν

(
f(ζ) + xf ′(ζ)

∂ζ

∂x

)
v = −

√
aνf(ζ). (3.7)

• ∂u

∂x
=

∂

∂x
(af ′(ζ)x)

= a

(
f ′(ζ) + xf ′′(ζ)

∂ζ

∂x

)
= af ′(ζ). (3.8)

• ∂u

∂y
=

∂

∂y
(axf ′(ζ))

= axf ′′(ζ)
∂ζ

∂y

= a

√
a

ν
xf ′′(ζ). (3.9)

• ∂2u

∂y2
= a

√
a

ν
xf ′′′(ζ)

∂ζ

∂y

= a

√
a

ν
xf ′′′(ζ)

√
a

ν

=
a2

ν
xf ′′′(ζ). (3.10)

• ∂v

∂y
=

∂

∂y

(
−
√
aνf(ζ)

)
= −
√
aνf ′(ζ)

∂ζ

∂y

= −
√
aνf ′(ζ)

√
a

ν

= −af ′(ζ). (3.11)

• T − T∞ =
Dxn

k

√
ν

a
θ(ζ). (3.12)

T = T∞ +
Dxn

k

√
ν

a
θ(ζ)

∂T

∂x
=
D

k

√
ν

a

[
nxn−1θ(ζ)

]
=
nD

k

√
ν

a
xn−1θ(ζ). (3.13)

• ∂T

∂y
=
Dxn

k

√
ν

a
θ′(ζ)

∂ζ

∂y

=
Dxn

k

√
ν

a
θ′(ζ)

√
a

ν

=
Dxn

k
θ′(ζ). (3.14)
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• ∂2T

∂y2
=
D

k

√
a

ν
xnθ′′(ζ). (3.15)

• u
∂u

∂x
= axf ′(ζ) (af ′(ζ))

= a2xf ′
2

(ζ). (3.16)

• v
∂u

∂y
= −
√
aνf(ζ)

(
a

√
a

ν
xf ′′(ζ)

)
= a2xf ′′(ζ)f(ζ). (3.17)

Equation (3.1) is easily satisfied by using (3.8) and (3.11) as follows:

∂u

∂x
+
∂v

∂y
= af ′(ζ)− af ′(ζ)

∂u

∂x
+
∂v

∂y
= 0. (3.18)

Using (3.16) and (3.17), the left side of (3.2) becomes:

u
∂u

∂x
+ v

∂u

∂y

= a2xf ′
2

(ζ)− a2xf ′′(ζ)f(ζ)

= xa2
[
f ′

2

(ζ)− f ′′(ζ)f(ζ)
]
. (3.19)

Using (3.6) and (3.10), the right side of (3.2) becomes:

ν

(
∂2u

∂y2

)
− σB2

0

ρ
u

= ν

(
a2

ν
xf ′′′(ζ)

)
− σB2

0

ρ
axf ′(ζ)

= xa2
[
f ′′′(ζ)− σB2

0

aρ
f ′(ζ)

]
= xa2

[
f ′′′(ζ)−M2f ′(ζ)

]
. (3.20)

Using (3.19) and (3.20), the dimensionless form of (3.2) can be seen as follows:

(
u
∂u

∂x
+ v

∂u

∂y

)
= ν

(
∂2u

∂y2

)
− σ

ρ
B2

0u
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⇒ xa2
[
f ′

2

(ζ)− f ′′(ζ)f(ζ)
]

= xa2
[
f ′′′(ζ)−M2f ′(ζ)

]
.

⇒ f ′
2

(ζ)− f ′′(ζ)f(ζ) = f ′′′(ζ)−M2f ′(ζ).

⇒ f ′′′(ζ) + f(ζ)f ′′(ζ)− f ′2(ζ)−M2f ′(ζ) = 0. (3.21)

Using (3.6), (3.7), (3.13) and (3.14), in the left side of (3.3), we get:

u
∂T

∂x
+ v

∂T

∂y
= axf ′(ζ)

[
nD

k

√
ν

a
xn−1θ(ζ)

]
−
√
νaf(ζ)

[
D

k
xnθ′(ζ)

]
=
anD

k

√
ν

a
xnf ′(ζ)θ(ζ)− D

k

√
νaxnf(ζ)θ′(ζ)

=
aD

k

√
ν

a
xn [nf ′(ζ)θ(ζ)− fθ′(ζ)] . (3.22)

Using (3.12) and (3.15) in the right side of (3.3), we get the following:

k

ρCp

∂2T

∂y2
+

Q

ρCp
(T − T∞) =

kD

kρCp

√
a

ν
xnθ′′(ζ) +

Q

ρCp

Dxn

k

√
ν

a
θ(ζ)

=
aD

k

√
ν

a
xn
[

k

ρCpν
θ′′(ζ) +

Q

aρCp
θ(ζ)

]
. (3.23)

With the help of (3.22) and (3.23), the following dimensionless form of (3.3), is

obtained:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+

Q

ρCp
(T − T∞) .

⇒ aD

k

√
ν

a
xn [nf ′(ζ)θ(ζ)− f(ζ)θ′(ζ)] =

aD

k

√
ν

a
xn
[

k

ρCpν
θ′′(ζ) +

Q

aρCp
θ(ζ)

]
.

⇒ nf ′(ζ)θ(ζ)− f(ζ)θ′(ζ) =
k

ρCpν
θ′′ +

Q

aρCp
θ(ζ).

⇒ nf ′(ζ)θ(ζ)− f(ζ)θ′(ζ) =
1

Pr
θ′′(ζ) +Bθ(ζ).

⇒ θ′′(ζ) + Pr [f(ζ)θ′(ζ)− nf ′(ζ)θ(ζ) +Bθ(ζ)] = 0. (3.24)

The corresponding BCs are transformed into the non-dimensional form through

the following procedure:

• u = bx, at y = 0.
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⇒ u = af ′(ζ)x, at ζ = 0.

⇒ af ′(ζ)x = bx, at ζ = 0.

⇒ f ′(ζ) = ε, ε = b/a, at ζ = 0.

⇒ f ′(ζ) = ε, at ζ = 0.

• v = −v0, at y = 0.

⇒ v = −
√
aνf(ζ), at ζ = 0.

⇒ −
√
aνf(ζ) = −v0, at ζ = 0.

⇒ f(ζ) =
v0√
aν
, at ζ = 0.

⇒ f(ζ) = S, at ζ = 0.

• − k∂T
∂y

= Dxn, at y = 0.

⇒ ∂T

∂y
=
Dxn

k
θ′(ζ), at ζ = 0.

⇒ − k
(
Dxn

k
θ′(ζ)

)
= Dxn, at ζ = 0.

⇒ θ′(ζ) = −1, at ζ = 0.

⇒ θ′(ζ) = −1, at ζ = 0.

• u→ (0), as y →∞.

⇒ af ′(ζ)x→ (0), as ζ →∞.

⇒ f ′(ζ)→ (0), as ζ →∞.

⇒ f ′(ζ)→ (0), as ζ →∞.

• T → T∞, as y →∞.

⇒ T − T∞ =
Dxn

k

√
ν

a
θ(ζ), as ζ →∞.

⇒ θ(ζ)→ 0, as ζ →∞.

The final dimensionless form of the governing model is:

f ′′′(ζ) + f ′′(ζ)f(ζ)− f ′2(ζ)−M2f ′(ζ) = 0, (3.25)

θ′′(ζ) + Pr [f(ζ)θ′(ζ)− nf ′(ζ)θ(ζ) +Bθ(ζ)] = 0. (3.26)
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The associated BCs (3.4) in the dimensionless form are as follows:

f(0) = S, f ′(0) = ε, θ′(0) = −1.

f ′(ζ)→ 0, θ(ζ)→ 0, as ζ →∞.

 (3.27)

Different parameters used in equations (3.25) and (3.26) are formulated as follows:

M2 =
σB2

0

ρa
, Pr =

µCp
k
, B =

Q

aρCp
.

The skin friction coefficient, is given as follows:

Cfx =
τw|y=0

ρU2
w(x)

. (3.28)

To achive the dimensionless form of Cfx the following formula will be helpful:

τw = µ

(
∂u

∂y

)
y=0

. (3.29)

As a result the dimensionless form of the skin friction coefficient gets the following

form:

Cfx =
µ
(
∂u
∂y

)
y=0

ρU2
w(x)

,

=
µ
(
a
√

a
ν
x
)

ρa2x2
f ′′(0),

=
ρν

ρa1/2x
f ′′(0),

=

√
ν

a1/2
xf ′′(0),

=
1

Re
1/2
x

f ′′(0),

⇒ Re1/2x Cfx = f ′′(0), (3.30)

where Rex denotes the Reynolds number defined as Rex = xuw(x)
ν

.
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Local Nusselt number is defined as follows:

Nux =
xqw

k(T − T∞)
. (3.31)

To achive the dimensionless form of Nux the following formula will be helpful:

qw = −k
(
∂T

∂y

)
y=0

. (3.32)

As a result the dimensionless form of the Nusselt number gets the following form:

Nux =
−xk

(
∂T
∂y

)
y=0

k(T − T∞)
,

=
−xDxn

k
θ′(0)

Dxn

k

√
ν
a

,

=
−xa1/2

ν1/2
θ′(0),

= −Re1/2x θ′(0),

⇒ Re−1/2x Nux = −θ′(0). (3.33)

3.2 Numerical Method for Solution

The shooting method has been used to solve the ordinary differential equation

(3.25). Use the notations given below for conversion of (3.25) to a system of first

order ODEs:

f = y1, f ′ = y′1 = y2, f ′′ = y′′1 = y′2 = y3, f ′′′ = y′3.

Now the momentum equation (3.26) is converted into the following system of first

order ODEs:

y′1 = y2, y1(0) = S.

y′2 = y3, y2(0) = ε.
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y′3 = −y1y3 + y22 +M2y2, y3(0) = l.

”The above initial value problem will be numerically solved by RK-4 method.

To get the approximate result, the domain of the problem has been taken as

[0, ζ∞], where ζ∞ is an approximate finite positive real number. The missing

initial condition l for the above IVP satisfied the following equation.”

(y2(l))ζ=ζ∞ = 0.

For the convenience (yi(l))ζ=ζ∞ and the partial derivatives w.r.t l at ζ = ζ∞ will

be denoted by (yi(l)) and ∂yi
∂l

respectively.

Newton’s method will be used to find l, which has the following iterative scheme:

lr+1 = lr − y2(l
r)(

∂
∂l

(y2(l))
)
l=lr

, r = 0, 1, 2....

With the help of the following notations, the above formula will be made to give

the result.

∂y1
∂l

= y4,
∂y2
∂l

= y5,
∂y3
∂l

= y6.

As a result of these new notations the Newton’s iterative scheme gets the following

form:

lr+1 = lr − y2(l
r)

y5(lr)
.

Now differentiating the last system of three first order ODEs with respect to l, we

get another system of three ODEs:

y′4 = y5, y4(0) = 0,

y′5 = y6, y5(0) = 0,

y′6 = −y1y6 − y3y4 + 2y2y5 +M2y5, y6(0) = 1.
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The stoping criteria for the Newton’s technique, is set as:

| y2(l) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward, ε has

been taken as 10−10.

The equation (3.26) will be numerically solved by using shooting method by as-

suming f as a known function. For this, we utilize the following notions:

θ = Z1, θ′ = Z2, θ′′ = Z ′2.

As a result, the energy equation (3.26) is converted into the following system of

first order ODEs:

Z ′1 = Z2, Z1(0) = s.

Z ′2 = −PrfZ2 + nPrf ′Z1 − PrBZ1 Z2(0) = −1.

The above initial value problem IVP will be numerically solved by RK-4 technique.

The missing initial condition for the above IVP satisfy the following equation:

Z1(s) = 0.

Now, we use Newton’s method,

sr+1 = sr − Z1(s
r)(

∂
∂s

(Z1(s))
)
s=sr

.

Next, introduce the following notations:

∂Z1

∂s
= Z3,

∂Z2

∂s
= Z4.
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As a result of these new notations, the Newton’s iterative scheme get the following

form:

sr+1 = sr − Z1(s
r)

Z3(sr)
.

Now differentiate the above system of two first order ODEs with respect to s, to

get two more first order ODEs:

Z ′3 = Z4, Z3(0) = 1,

Z ′4 = −PrfZ4 + nPrf ′Z3 − PrBZ3, Z4(0) = 0.

The above initial value problem will be numerically solved by RK-4 technique, to

get the approximate solution.

The process will be repeated until the following stopping criteria is met:

|Z1(s)| < ε.

3.3 Analysis of Graphs and Tables

A thorough discussion on the graphs and tables has been conducted which con-

tains the behaviour of different dimensionless parameters on the local skin friction

coefficient (Rex)
1
2Cfx and local Nusselt number (Rex)

− 1
2Nux.

Table 3.1 explains the impact of suction parameter S, magnetic parameter M2,

stretching/shrinking parameter ε, on (Rex)
1
2Cfx. For the rising values of S, the

skin friction (Rex)
1
2Cfx increases. For increasing values of ε, the skin friction coef-

ficient (Rex)
1
2Cfx is found to decrease. In this table, Il is the interval from which

the missing condition l can be chosen.

In Table 3.2, the effect of significant parameters like suction parameter S, mag-

netic parameter M2, stretching/shrinking parameter ε, Prandtl number Pr and

heat source parameter B on Nusselt number (Rex)
− 1

2Nux has been discussed. The

rising pattern is found in (Rex)
− 1

2Nux due to increasing values of S. In this table,
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Is is the interval from which the missing condition s can be chosen.

Figure 3.2 reflects the behaviour of the temperature profile θ(ζ) for different

values of Pr without B. Pr is inversely related to thermal diffusivity, so by in-

creasing values of Pr, the thermal diffusivity will be reduced. So if the value of

Pr increases, the temperature profile will be decreased.

Figures 3.3 and 3.4 show the impact of the suction parameter S on the non-

dimensional transverse velocity f(ζ) and longitudinal velocity profile f ′(ζ). As

the values of S increase, the velocities will also increase. The effect of porosity

enhances the velocities. The effect of each value of S remains uniform as we move

away from the wall.

Figure 3.5 reflects the impact of S on the temperature distribution θ(ζ). By en-

hancing the suction parameter, the thermal boundary thickness will be decreased.

A decrement will be observed in the temperature profile as the values of S increase.

Figures 3.6 and 3.7 reflect the impact of the magnetic field parameter M2 on the

transverse velocity f(ζ) and longitudinal velocity f ′(ζ). As the values of M2 in-

crease, the dimensionless transverse and longitudinal velocities will also increase.

Figure 3.8 shows the impact of M2 on the temperature distribution θ(ζ). A

decrement is observed in the temperature profile while we accelerate the values of

M2. It is due to reduction in thermal boundary layer thickness, so the temperature

of the fluid will be decreased.

Figure 3.9 displays the impact of Pr on θ(ζ). As the values of Pr increase,

the temperature distribution will reduce its values. It is due the inverse relation

between Pr and thermal diffusivity.

Figure 3.10 shows the influence of heat source parameter B on the temperature

profile θ(ζ). As we know that heat is directly related to temperature, if the values

of B increase, so the temperature of fluid will also increase.

Figure 3.11 shows the impact of heat flux n on temperature distribution θ(ζ). Heat

flux is proportional to temperature difference between solid, liquid or gaseous me-

dia. So if the values of heat flux increase, the temperature of fluid will also increase.

Figure 3.12 shows the impact of stretching/shrinking parameter ε on the longitu-

dinal velocity f ′(ζ). It can be shown from the figure that the velocity profile is
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enhanced for larger values of ε. This increase in the non-dimensional velocity of

stretching is due to the greater value of ε and helps to cause more fluid deforma-

tion.

Figure 3.13 shows the influence of stretching/shrinking parameter ε on θ(ζ). As

the values of ε increase, the momentum boundary layer becomes thicker. Whereas

with an increase in ε, a reduction will be observed in temperature distribution;

leading to an increase in heat transfer.

Table 3.1: Results of (Rex)
1
2Cfx for various parameters

S M2 ε (Rex)
1
2Cfx Il

2.0 2.0 -1.0 2.414214 [0.1, 1.9]

3.0 3.302775 [0.4, 2.9]

4.0 4.236068 [0.1, 1.6]

5.0 5.192582 [-0.9,2.7]

6.0 6.162278 [-1.5,2.5]

7.0 7.162278 [-1.5,2.5]

8.0 8.162278 [-1.5,2.5]

3.0 0.0 2.618041 [1.0, 2.9]

1.0 3.000000 [0.7, 2.3]

2.0 3.302775 [0.4, 1.6]

3.0 3.561552 [-0.1,1.8]

4.0 3.791287 [-0.2,1.6]

5.0 3.891287 [-0.3,1.6]

6.0 3.991287 [-0.4,1.6]

2.0 3.302775 [0.4, 0.9]

-0.5 1.718246 [-0.8,0.5]

0.5 -1.839725 [-1.9,1.5]

1.0 -3.791287 [-2.0,0.9]

1.5 -4.791287 [-2.0,0.9]

2.0 -5.791287 [-2.0,0.9]
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Table 3.2: Results of −(Rex)−
1
2Nux for various parameters

S M2 ε Pr B n −(Rex)
− 1

2Nux Is

2.0 2.0 -1.0 0.71 0.05 2.0 -1.332041 [0.6, 1.6]

3.0 -0.590706 [0.1, 2.9]

4.0 -0.397615 [0.3, 1.5]

5.0 -0.303852 [-0.5,2.5]

6.0 -0.247232 [-0.3,1.3]

3.0 0.0 -0.617806 [1.0, 3.9]

1.0 -0.601214 [0.7, 2.3]

2.0 -0.590706 [0.5, 2.2]

3.0 -0.583077 [-0.1,0.8]

4.0 -0.577130 [-0.3,0.9]

2.0 -0.590706 [0.4, 1.2]

-0.5 -0.522113 [-0.7,0.5]

0.5 -0.436166 [-1.5,3.1]

1.0 -0.406903 [-0.8,1.4]

-1.0 -0.590706 [0.1, 3.8]

1.00 -0.404932 [1.0, 4.0]

1.50 -0.259153 [-0.1,1.6]

2.30 -0.162535 [0.4, 1.8]

7.00 -0.049831 [0.1, 1.9]

0.71 0.00 -0.583253 [-0.8,0.1]

0.05 -0.590706 [-0.7,0.5]

0.08 -0.594951 [-0.2,0.1]

0.10 -0.598013 [-0.3,0.2]

0.30 -0.632231 [-0.4,0.9]

0.05 -2.0 -0.445982 [-0.1,1.5]

-1.0 -0.473579 [0.3, 0.9]

0.0 -0.505873 [0.4, 1.2]

1.0 -0.544200 [0.1, 2.2]

2.0 -0.590706 [0.4, 0.9]
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Figure 3.2: Impact of Pr on θ(ζ) for B = 0.
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Figure 3.4: Impact of S on f ′(ζ) for M2 = 2.
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Figure 3.5: Influence of S on θ(ζ) for B = 0.05.
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Figure 3.6: Impact of M2 on transverse velocity profile.
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Figure 3.8: Influence of M2 over temperature profile.
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Numerical Simulation MHD Boundary Flow 37

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ζ

θ
(ζ
)

 

 
B = 0.0
B = 0.05
B = 0.08
B = 0.1
B = 0.3

S = 3.0, M2 = 2.0,
Pr = 0.71, n = 2.0

Figure 3.10: Impact of B on θ(ζ).
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Figure 3.11: Impact of n on θ(ζ).
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Figure 3.12: Impact of ε on longitudinal velocity profile.
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Chapter 4

Effect of Joule Heating and

Arrhenius Activation Energy on

MHD Boundary Layer Flow over

a Stretching/Shrinking Sheet

4.1 Introduction

This chapter contains the extension of the model discussed in the last chapter. By

considering additional impact of MHD, Joule heating , Thermophoresis diffusion

and Brownian motion in temperature and concentration equation. We convert the

concentration, temperature and momentum PDEs into set of ODEs by using the

similarity transformation.

The familiar shooting technique has been used for the computation of the nu-

merical solution of these ODEs. At the end of this chapter, the final results are

discussed. Nusselt number and Sherwood number are shown in tables, while the

impact of significant parameters on the temperature profile and concentration dis-

tribution are shown in graphs.

39
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4.2 Mathematical Modeling

Figure 4.1: Systematic representation of physical model.

It is aimed to analyze a 2-D incompressible, steady and laminar MHD flow of

viscous, electrically conducting fluid caused by a stretching/shrinking sheet in the

presence of uniform magnetic field B0. Furthermore, the direction of flow is taken

along x-axis while y-axis normal to it. Energy transport analysis is aimed to be

carried out in the presence of Joule heating, Brownian diffusion and thermophoresis

diffusion. Moreover, the concentration of flow will be discussed with the help of

concentration equation under the effect of activation energy and chemical reaction.
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The system of equations describing the flow are given below:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂y2

)
− σB2

0

ρ
u, (4.2)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

(
∂2T

∂y2

)
+

Q

ρCp
(T − T∞)

+ τ

(
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
)

+
σB2

0

ρCp
u2, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2

−K2
r

(
T

T∞

)m
exp

[
−Ea
kT

]
(C − C∞). (4.4)

The associated BCs have been taken as:

u = Uw = bx, v = −v0, T = Tw, C = Cw at y = 0.

u→ 0, T → T∞, C → C∞ as y →∞.

 (4.5)

For the conversion of the mathematical model of PDEs (4.1)-(4.4) into the ODEs,

the following similarity transformation have been considered:

ψ(x, y) =
√
aνf(ζ),

ζ = y

√
a

ν
,

θ(ζ) =
T − T∞
Tw − T∞

,

φ(ζ) =
C − C∞
Cw − C∞

,


(4.6)

where ψ denotes the stream function, ζ denotes the similarity variable, θ(ζ) and

φ(ζ) are the dimensionless temperature and concentration.

The detailed procedure for the conversion of (4.1) and (4.2) into the dimensionaless

form has been already discussed in chapter 3.
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Now, included below is the procedure for the conversion of (4.3) into the dimen-

sionless form:

• ∂T

∂x
= (Tw − T∞)θ′(ζ)

∂ζ

∂x

= 0. (4.7)

• ∂T

∂y
= (Tw − T∞) θ′(ζ)

∂ζ

∂y

= (Tw − T∞)

√
a

ν
θ′(ζ). (4.8)

• ∂2T

∂y2
= (Tw − T∞)

(a
ν

)
θ′′(ζ). (4.9)

• ∂C

∂x
= (Cw − C∞)φ′(ζ)

∂ζ

∂x

= 0. (4.10)

• ∂C

∂y
= (Cw − C∞)φ′(ζ)

∂ζ

∂y

= (Cw − C∞)

√
a

ν
φ′(ζ). (4.11)

• ∂2C

∂y2
= (Cw − C∞)

a

ν
φ′′(ζ). (4.12)

• u
∂T

∂x
= 0. (4.13)

• v
∂T

∂y
= −
√
aνf(ζ)(Tw − T∞)

√
a

ν
θ′(ζ)

= −a(Tw − T∞)f(ζ)θ′(ζ). (4.14)

• k

ρCp

∂2T

∂y2
=

k

ρCp
(Tw − T∞)

(a
ν

)
θ′′(ζ). (4.15)

• Q

ρCp
(T − T∞) =

Q

ρCp
(Tw − T∞)θ(ζ). (4.16)

• τDB
∂C

∂y

∂T

∂y
= τDB

a

ν
(Cw − C∞)(Tw − T∞)θ′(ζ)φ′(ζ). (4.17)

• τ
DT

T∞

(
∂T

∂y

)2

= τ
DT

T∞

[
(Tw − T∞)

√
a

ν
θ′(ζ)

]2
= τ

DT

T∞

a

ν
(Tw − T∞)2θ′

2

(ζ). (4.18)

• σ

ρCp
B2

0u
2 =

σ

ρCp
B2

0a
2x2f ′

2

(ζ). (4.19)
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Using (4.13) and (4.14), in the left side of (4.3), we get the following:

u
∂T

∂x
+ v

∂T

∂y
= −a(Tw − T∞)f(ζ)θ′(ζ). (4.20)

Using (4.15) to (4.19) in the right side of (4.3), we get the following:

k

ρCp

(
∂2T

∂y2

)
+

Q

ρCp
(T − T∞) + τ

(
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
)

+
σB2

0

ρCp
u2

=
k

ρCp
(Tw − T∞)

(a
ν

)
θ′′(ζ) +

Q

ρCp
(Tw − T∞)θ(ζ) +

σ

ρCp
B2

0a
2x2f ′

2

(ζ)

+ τDB
a

ν
(Cw − C∞)(Tw − T∞)θ′(ζ)φ′(ζ) + τ

DT

T∞

a

ν
(Tw − T∞)2θ′

2

(ζ)

= a(Tw − T∞)[
k

ρCpν
θ′′(ζ) +

Q

aρCp
θ(ζ) +

τDB

ν
(Cw − C∞)θ′(ζ)φ′(ζ)

+
τDT

T∞ν
(Tw − T∞)θ′

2

(ζ) +
σ

ρCp(Tw − T∞)
B2

0ax
2f ′

2

(ζ)]

= a (Tw − T∞)

[
1

Pr
θ′′(ζ) +Bθ(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′

2

(ζ) +M2Ecf ′
2

(ζ)

]
.

(4.21)

With the help of (4.20) and (4.21), the following dimensionless form of (4.3) is

obtained:

− f(ζ)θ′(ζ) =
1

Pr
θ′′(ζ) +Bθ(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ

′2(ζ) +M2Ecf ′2(ζ).

⇒ 1

Pr
θ′′(ζ) +Bθ(ζ) + f(η)θ′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ

′2(ζ) +M2Ecf ′2(ζ) = 0.

(4.22)

Now, the conversion involved to get (4.4) converted into the dimensionless form

are:

• DB
∂2C

∂y2
= DB

a

ν
(Cw − C∞)φ′′(ζ)

= a (Cw − C∞)

[
DB

ν
φ′′(ζ)

]
= a (Cw − C∞)

[
1

Sc
φ′′(ζ)

]
. (4.23)



Analyzing the Activation Energy and Ohmic Heating 44

• DT

T∞

∂2T

∂y2
=
DT

T∞

a

ν
(Tw − T∞) θ′′(ζ)

= a (Cw − C∞)

[
DT

T∞ν

(
Tw − T∞
Cw − C∞

)
θ′′(ζ)

]
= a (Cw − C∞)

DB

ν

[
DT

T∞DB

(
Tw − T∞
Cw − C∞

)
θ′′(ζ)

]
= a (Cw − C∞)

1

Sc

Nt

Nb

θ′′(ζ). (4.24)

• k2r

(
T

T∞

)m
exp

[
−Ea
kT

]
(Cw − C∞)

= k2r

(
1 +

(
Tw − T∞
T∞

)
θ(ζ)

)m
exp

 − Ea

kT∞

1 +
(
Tw−T∞
T∞

)
θ(ζ)

 (Cw − C∞)φ(ζ)

= a (Cw − C∞)

[
σ∗ (1 + δθ(ζ))m exp

(
−E1

1 + δθ(ζ)

)
φ(ζ)

]
. (4.25)

Now use (4.10) and (4.11) to convert the left hand side of (4.4) into the dimen-

sionless form. The left hand side of (4.4), get the form:

u
∂C

∂x
+ v

∂C

∂y
= axf ′(ζ) [0] +

[
−
√
aνf(ζ)

]
(Cw − C∞)

√
a

ν
φ′(ζ)

= −a (Cw − C∞) f(ζ)φ′(ζ). (4.26)

Now by using (4.23), (4.24) and (4.25) in the right hand side of (4.4), we get:

DB
∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
−K2

r

(
T

T∞

)m
exp

[
−Ea
kT

]
(C − C∞).

= a (Cw − C∞)

[
1

Sc
φ′′(ζ) +

1

Sc

Nt

Nb

θ′′(ζ)− σ∗ (1 + δθ(ζ))m exp

(
−E1

1 + δθ(ζ)

)
φ(ζ)

]
.

(4.27)

From (4.26) and (4.27), the dimensionless form of (4.4) is:

− f(ζ)φ′(ζ) =
1

Sc
φ′′(ζ) +

1

Sc

Nt

Nb

θ′′(ζ)− σ∗ (1 + δθ(ζ))m exp

(
−E1

1 + δθ(ζ)

)
φ(ζ)

⇒ 1

Sc
φ′′(ζ) +

1

Sc

Nt

Nb

θ′′(ζ)− σ∗ (1 + δθ(ζ))m exp

(
−E1

1 + δθ(ζ)

)
φ(ζ) + f(ζ)φ′(ζ) = 0.

(4.28)
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The associated boundary conditions will be converted through the following pro-

cedure:

• u = Uw(x) = bx, at y = 0.

⇒ u = axf ′(ζ), at ζ = 0.

⇒ af ′(ζ)x = bx, at ζ = 0.

⇒ f ′(ζ) = ε, ε = b/a, at ζ = 0.

⇒ f ′(ζ) = ε, at ζ = 0.

• v = −v0, at y = 0.

⇒ v = −
√
aνf(ζ), at ζ = 0.

⇒ −
√
aνf(ζ) = −v0, at ζ = 0.

⇒ f(ζ) =
v0√
aν
, at ζ = 0.

⇒ f(ζ) = S, at ζ = 0.

• − ∂T

∂y
= −

√
a

ν
(Tw − T∞) , at y = 0.

⇒ ∂T

∂y
= (Tw − T∞)

√
a

ν
θ′(ζ), at ζ = 0.

⇒ −
√
a

ν
(Tw − T∞) = (Tw − T∞)

√
a

ν
θ′(ζ), at ζ = 0.

⇒ θ′(ζ) = −1, at ζ = 0.

• C = Cw, at y = 0.

⇒ φ(ζ) (Cw − C∞) + C∞ = Cw, at ζ = 0.

⇒ φ(ζ) (Cw − C∞) = Cw − C∞, at ζ = 0.

⇒ φ(ζ) = 1, at ζ = 0.

• u→ (0), as y →∞.

⇒ af ′(ζ)x→ (0), as ζ →∞.

⇒ f ′(ζ)→ (0), as ζ →∞.

• T → T∞, as y →∞.

⇒ θ(ζ)(Tw − T∞) + T∞ → T∞, as ζ →∞.

⇒ θ(ζ)(Tw − T∞)→ 0, as ζ →∞.

⇒ θ(ζ)→ 0, as ζ →∞.
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• C → C∞, as y →∞.

⇒ φ(ζ) (Cw − C∞) + C∞ → C∞, as ζ →∞.

⇒ φ(ζ) (Cw − C∞) + C∞ → 0, as ζ →∞.

⇒ φ(ζ)→ 0, as ζ →∞.

The final dimensionless form of the governing model is:

1

Pr
θ′′(ζ) +Bθ(ζ) + f(ζ)θ′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ

′2(ζ) +M2Ecf ′2(ζ) = 0.

(4.29)

1

Sc
φ′′(ζ) +

1

Sc

Nt

Nb

θ′′(ζ)− σ (1 + δθ(ζ))m exp

[
−E1

1 + δθ(ζ)

]
φ(ζ) + f(ζ)φ′(ζ) = 0.

(4.30)

The associated BCs (4.5) in the dimensionless form are as follow:

θ′(0) = −1, φ(0) = 1

θ(ζ)→ 0, φ(ζ)→ 0, as ζ →∞.

 (4.31)

Different parameters used in equations (4.29) and (4.30) are formulated as follows:

M2 =
σB2

0

ρa
, Pr =

µCp
k
, B =

Q

aρCp
, Ec =

a2x2

Cp(Tw − T∞)
,

Nb =
τDB(Cw − C∞)

νf
, Nt =

τDT (Tw − T∞)

T∞νf
, Sc =

ν

DB

,

σ∗ =
k2r
a
, δ =

Tw − T∞
T∞

, E1 =
Ea
kT∞

.

The local Nusselt number is defined as follows:

Nux =
xqw

k(Tw − T∞)
. (4.32)

To achive the dimensionless form of Nux, the following formula will be helpful.

qw = −k
(
∂T

∂y

)
y=0

. (4.33)



Analyzing the Activation Energy and Ohmic Heating 47

As a result,

Nux = − kx

k(Tw − T∞)

(
∂T

∂y

)
y=0

= − x

(Tw − T∞)
(Tw − T∞)

√
a

ν
θ′(0)

= −
√
x2a

ν
θ′(0)

= −(Rex)
1
2 θ′(0)

⇒ (Rex)
− 1

2Nux = −θ′(0), (4.34)

where

, Rex =
xuw(x)

ν
.

The local Sherwood number are defined as:

Shx =
xqm

DB(Cw − C∞)
. (4.35)

To achive the dimensionless form of of Shx, the following formula will be helpful.

qw = −DB

(
∂C

∂y

)
y=0

(4.36)

As a result,

Shx = − xDB

DB(Cw − C∞)

(
∂C

∂y

)
y=0

= − x

Cw − C∞

√
a

ν
(Cw − C∞)φ′(0)

= −x
√
a

ν
φ′(0)

= −
√
ax2

ν
φ′(0)

= −(Rex)
1
2φ′(0)

(Rex)
− 1

2Shx = −φ′(0). (4.37)
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4.3 Numerical Method for Solution

The shooting method has been used to solved ODEs (4.29) and (4.30). The fol-

lowing notations have been considered:

θ = Y1, θ′ = Y ′1 = Y2, θ′′ = Y ′′1 = Y ′2 ,

φ = Y3, φ′ = Y ′3 = Y4, φ′′ = Y ′4 .

By using the notations, the following system of first order ODEs is obtained:

Y ′1 = Y2, Y1(0) = p,

Y ′2 = −Pr
(
BY1 + fY2 +NbY2Y4 +NtY 2

2 +M2Ecf ′
2
)
, Y2(0) = −1,

Y ′3 = Y4, Y3(0) = 1,

Y ′4 = −ScfY4 +
Nt

Nb
Pr
(
BY1 + fY2 +NbY2Y4 +NtY 2

2 +M2Ecf ′
2
)

+ Scσ∗ (1 + δY1)
m exp

[
−E1

1 + δY1

]
Y3, Y4(0) = q.

The above IVP will be numerically solved by RK-4 technique. For the approximate

result, the domain of the problem has been chosen from [0, ζ∞], where ζ∞ is an

approximate finite positive real number. The missing initial conditions for the

above IVP satisfy the following equation.

(Y1(p, q))ζ=ζ∞ = 0, (Y3(p, q))ζ=ζ∞ = 0.

For convenience (Yi(p, q))ζ=ζ∞ and their partial derivatives w.r.t p and q will be

denoted by (Yi(p, q)),
∂Yi
∂p

and ∂Yi
∂q

.

To solve the above algebraic equations, we apply the Newton’s method which has

the following scheme:

pr+1

qr+1

 =

pr
qr

−
∂Y1∂p ∂Y1

∂q

∂Y1
∂p

∂Y3
∂q

−1  Y1

Y3


(pr,qr)
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Now, introduce the following notations:

∂Y1
∂p

= Y5,
∂Y2
∂p

= Y6,
∂Y3
∂p

= Y7,
∂Y4
∂p

= Y8.

∂Y1
∂q

= Y9,
∂Y2
∂q

= Y10,
∂Y3
∂q

= Y11,
∂Y4
∂q

= Y12.

As a result of these new notations, the Newton’s iterative scheme gets the form:

pr+1

qr+1

 =

pr
qr

−
Y5 Y9

Y7 Y11

−1  Y1

Y3


(pr,qr)

Now differentiate the last system of four first order ODEs with respect to p and q

to get the following system of first order eight ODEs:

Y ′5 = Y6, Y5(0) = 1,

Y ′6 = −Pr (BY5 + fY6 +Nb (Y2Y8 + Y6Y4) + 2NtY2Y6) , Y6(0) = 0,

Y ′7 = Y8, Y7(0) = 0,

Y ′8 = −ScfY8 +
Nt

Nb
Pr (BY5 + fY6 +Nb (Y2Y8 + Y6Y4) + 2NtY2Y6)

+ σ∗Sc (1 + δY1)
m exp

[
−E1

1 + δY1

]
Y7

+ Sc (1 + δY1)
m−2 exp

[
−E1

1 + δY1

]
E1δσ

∗Y5Y3

+ Sc m (1 + δY1)
m−1 exp

[
−E1

1 + δY1

]
δσ∗Y5Y3, Y8(0) = 0.

Y ′9 = Y10, Y9(0) = 0.

Y ′10 = −Pr (BY9 + fY10 +Nb (Y2Y12 + Y10Y4) + 2NtY2Y10) , Y10(0) = 0.

Y ′11 = Y12, Y11(0) = 0.

Y ′12 = −ScfY12 +
Nt

Nb
Pr (BY9 + fY10 +Nb (Y2Y12 + Y10Y4) + 2NtY2Y10)

+ σ∗Sc (1 + δY1)
m exp

[
−E1

1 + δY1

]
Y11

+ Sc (1 + δY1)
m−2 exp

[
−E1

1 + δY1

]
E1δσ

∗Y9Y3

+ Sc m (1 + δY1)
m−1 exp

[
−E1

1 + δY1

]
δσ∗Y9Y3, Y12(0) = 1.
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The stopping criteria for the Newton’s method is set as follow:

max {|Y1(p, q)|, |Y3(p, q)|} < ε.

4.4 Analysis of Graphs and Tables

The principal objective is to examine the impact of different parameters on the

temperature profile θ(ζ) and concentration profile φ(ζ). The impact of different

factors like magnetic parameter M2, heat source parameter, B and activation

parameter E1 is observed graphically. Numerical outcomes of the local Nusselt

number and local Sherwood number for the distinct values of some fixed parame-

ters are shown in Table 4.1. The rising pattern is found in the Sherwood number

due to extending values of Pr and M2 while the Nux decreases. In this table, I

is the interval from which the missing conditions p and q can be chosen.

Figure 4.2 reflects the influence of Prandtl number Pr on temperature profile θ(ζ).

The Pr is the ratio between momentum diffusivity and thermal conductivity. As

the values of Pr increase, the thermal diffusivity will show the decreasing be-

haviour; so, the temperature distribution will be decreased.

Figure 4.3 displays the impact of Eckert number Ec on θ(ζ). As the Eckert num-

ber specifies the ratio of kinetic energy and enthalpy change of flow, it is clearly

observed that the θ(ζ) is increased by raising the values of Ec.

Figure 4.4 reflects influence of parameter B on the temperature profile θ(ζ). As

the heat source parameter increases, there will be an enhancement in boundary

layer thickness. So the temperature of fluid will increase as the values of B in-

crease.

Figure 4.5 describes the behaviour of M2 on θ(ζ). The boundary layer thickness

is decreased and leads to heat transfer. So the temperature distribution contracts

by enhancing the values of M2.

Figures 4.6 and 4.7 indicate the impact of Nt and Nb on temperature profile θ(ζ).

As the values of Nt and Nb increase, the temperature profile will also increase.

It is because of a temperature gradient. Nano size particles are move towards the
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lower temperature because of asymmetry of molecular impacts. The result due

to temperature grad the nano size particles experience a force which drives the

particles along a temperature gradient towards the lower temperature.

Figures 4.8 and 4.9 indicate the impact of Schmidt number Sc on dimension-

less temperature profile θ(ζ) and concentration distribution φ(ζ). It is the ratio

between kinematic viscosity and mass diffusivity. As Sc gets larger, it improves

momentum dissipation rate due to which particles concentration decreases. So,

the behaviour of temperature distribution is increased and concentration profile is

decreased due to accelerating values of Sc.

Figure 4.10 shows the impact of activation energy E1 on the concentration dis-

tribution φ(ζ). As there is an increase in the activation energy, there will be

decrement is observed in Arrhenius function and promotes the chemical reaction

leading to high concentration in boundary layer thickness. It is noticed that as the

value of activation energy increases, the concentration profile will also increase.

Figure 4.11 indicates the impact of reaction rate σ∗ on the concentration distri-

bution φ(ζ). A decrement is noticed in the concentration profile. It is due to of

the larger quantity of σ∗. Increment in the districted chemical reaction rate will

effectively rise the solubility.

Figures 4.12 and 4.13 describe the impact of B and Nb on the concentration distri-

bution φ(ζ). The behaviour of concentration distribution is found to be decreasing

while accelerating the values of B and Nb.

Figure 4.14 shows the influence of Eckert number Ec on the concentration dis-

tribution. It is clearly noticed that an increase in the number Ec, increases the

concentration profile. It is because of Ec, i.e. the ratio between kinetic energy

and enthalpy changes, The more the dissipation effect on temperature, the more

it is concentrated.

Figures 4.15 and 4.16 indicate the impact of Pr and M2 on concentration dis-

tribution φ(ζ). A decrement is noticed in the concentration distribution due to

accelerating values of Pr and M2. It is because of presence of Lorentz force.
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Table 4.1: Results of −(Rex)−
1
2Nux and −(Rex)−

1
2Shx some fixed parameters

S = 3.0, n = 2.0, B = 0.05, ε = −1.0, Nt = Nb = 0.1

M2 Pr Ec Sc δ E1 σ∗ −(Rex)−
−1
2 Nux −(Rex)−

1
2Shx I

0.0 0.7 0.1 1.0 0.1 0.01 0.01 -0.539598 1.778136 [-1.6,-0.8]

1.0 -0.542383 1.797075 [-1.6,-0.9]

2.0 -0.541728 1.809996 [-1.5,-0.7]

3.0 -0.540965 1.819798 [-1.4,-0.5]

4.0 -0.540243 1.827689 [-1.2,-0.2]

3.0 1.0 -0.385227 1.811995 [-1.5,-1.0]

1.5 -0.258176 1.816395 [-0.5,-0.1]

2.3 -0.170370 1.821173 [-0.4, 0.1]

7.0 -0.060823 1.830664 [-0.2, 0.4]

0.7 0.2 -0.549846 1.809740 [-0.8,-0.2]

0.3 -0.557967 1.809483 [-0.6,-0.1]

0.4 -0.566090 1.809227 [-0.5,-0.3]

0.5 -0.574216 1.808971 [-0.3,-0.1]

0.1 1.5 -0.546364 3.265701 [-1.5,-1.0]

2.0 -0.549289 4.735878 [-1.4, 0.1]

2.5 -0.551298 6.214300 [-1.3, 0.1]

3.0 -0.552758 7.697910 [-1.4, 0.2]

1.0 0.4 -0.541730 1.810453 [-1.2, 0.2]

0.5 -0.541731 1.810606 [-0.9,-0.1]

1.0 -0.541732 1.811367 [-0.9,-0.2]

1.3 -0.541734 1.811824 [-0.7,-0.1]

0.1 0.50 -0.541719 1.807769 [-1.5,-1.2]

1.50 -0.541710 1.805500 [-1.4,-1.0]

3.00 -0.541705 1.804442 [-1.5,-1.3]

5.00 -0.541704 1.804168 [-1.3,-1.2]

0.01 2.0 -0.544975 2.627174 [-1.0, 0.9]

3.0 -0.545971 2.929907 [-1.3, 0.1]

4.0 -0.546763 3.194008 [-0.9,-0.1]

5.0 -0.547417 3.430429 [-0.9,-0.2]
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Figure 4.2: Impact of Pr on θ(ζ).
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Figure 4.3: Influence of Ec on temperature distribution.
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Figure 4.4: Impact of B on temperature distribution.
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Figure 4.5: Influence of M2 on teperature distribution.
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Figure 4.6: Impact of Nt on θ(ζ).
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Figure 4.7: Impact of Nb on θ(ζ).
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Figure 4.8: Impact of Sc on temperature distribution.
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Figure 4.9: Impact of Sc on φ(ζ).
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Figure 4.10: Effect of E1 on concentration distribution.
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Figure 4.11: Influence of σ∗ on φ(ζ).



Analyzing the Activation Energy and Ohmic Heating 58

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζ

φ
(
ζ
)

 

 
B = 0.05
B = 0.10
B = 0.15
B = 0.20
B = 0.25

M2 = 2, Pr = 0.71
Sc = 0.1, Ec = 0.1

Figure 4.12: Influence of B on concentration distribution.
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Figure 4.13: Effect of Nb on concentration profile.
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Figure 4.14: Impact of Ec on concentration distribution.
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Figure 4.15: Influence of Pr on concentration distribution.



Chapter 5

Conclusion

In this thesis, the work of Devi et al. [39] is reviewed and extended with the effect

of joule heating effect, Brownian motion, thermophoresis diffusion, chemical reac-

tion rate and activation energy. First of all, momentum, energy and concentration

equations are converted into ODEs by using some similarity transformation. By

using the shooting technique, numerical solution has been found for the trans-

formed ODEs. For different values of physical parameters, the results are describe

in the form of tables and graphs for temperature distribution and concentration

profiles. The achievements of the current research can be summarized as below.

• Rising the values of Prandtl number Pr, decrease the temperature profile.

• For enhancing values of Ec and B, the temperature distribution is increasing.

• Increasing values of magnetic parameter M2, a decrement of temperature

profile observed.

• Due to ascending values E1 the numerical values of local Nux increases.

• A decrement is noticed in concentration profile due to increase of Pr number.

• A decrement is noticed in Nusselt number due to ascending values of Sc.

• Due to the ascending values of Nb, the temperature profile increased.

60
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• With a rise in Nb, the concentration profile decreased.

• Due to increasing values of B, a decrement observed in concentration distri-

bution.

• By increasing the values of Pr, the values of local Nusselt and Sherwood

numbers are increase.
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